

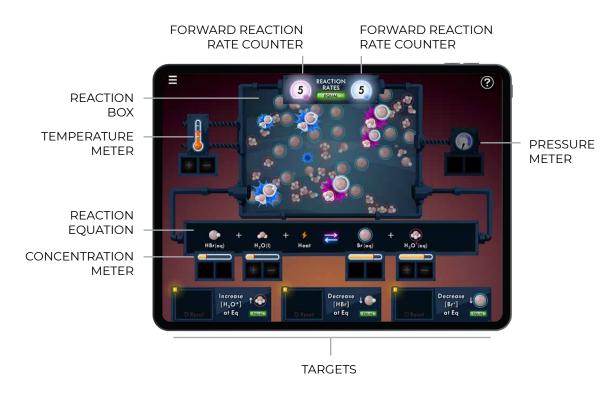
SNAPSHOT

Challenges

- The Challenge Levels increase in rigor and complexity.
- The first 4 levels are tutorial levels.
 - 21 core levels

Sandbox

- The Sandbox is an exploratory learning space for extended practice and review of the LeChâtelier Game.
- · 14 Achievements

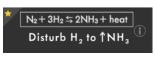

Integrated Chemistry Concepts

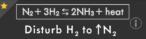
- Relative reaction rates (forward vs reverse)
- Relative K_c
- LeChatelier's Principle (concentration disturbances)
- LeChatelier's Principle (temperature disturbances)
- LeChatelier's Principle (pressure disturbances)

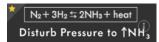
GAMEPLAY BASICS

LeChâtelier Game Level Layout

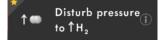
Skills


OVERVIEW





Achievements



HELP

ACHIEVEMENTS

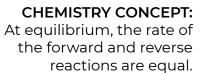
REVERSE REACTION RATE COUNTER

LeChâtelier Challenges

TARGETS

LEVELS 1-21 GOAL:

Disturb the reaction to cause changes to the system at equilibrium.



CHEMISTRY CONCEPT:

All reactions can proceed in the forward and reverse directions.

FORWARD REACTION: $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$ REVERSE REACTION: $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$

AT EQUILIBRIUM, BOTH THE FORWARD AND REVERSE REACTIONS ARE HAPPENING.

CHEMISTRY CONCEPT: When a system

at equilibrium is disturbed by change in concentration, it will adjust to reestablish equilibrium.

CHANGE IN REACTANTS

INCREASE REACTANTS

RETURN TO EQUILIBRIUM (SHIFTS RIGHT)

INCREASE PRODUCTS

DECREASE REACTANTS

RETURN TO EQUILIBRIUM (SHIFTS LEFT)

DECREASE PRODUCTS

CHEMISTRY CONCEPT:

When a system at equilibrium is disturbed by change in concentration, it will adjust to reestablish equilibrium (cont.).

CHANGE IN PRODUCTS

INCREASE PRODUCTS

RETURN TO EQUILIBRIUM (SHIFTS LEFT)

INCREASE REACTANTS

DECREASE PRODUCTS

RETURN TO EQUILIBRIUM (SHIFTS RIGHT)

DECREASE REACTANTS

CHEMISTRY CONCEPT:

When a system at equilibrium is disturbed by change in temperature, it will adjust to reestablish equilibrium.

EXOTHERMIC REACTIONS

INCREASE TEMPERATURE RETURN TO EQUILIBRIUM (SHIFTS LEFT)

DECREASE PRODUCTS

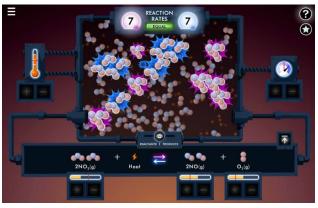
DECREASE TEMPERATURE

 \rightarrow

RETURN TO EQUILIBRIUM (SHIFTS RIGHT)

INCREASE PRODUCTS

CHEMISTRY CONCEPT:


When a system at equilibrium is disturbed by change in temperature, it will adjust to reestablish equilibrium (cont.).

ENDOTHERMIC REACTIONS

INCREASE TEMPERATURE RETURN TO EQUILIBRIUM (SHIFTS RIGHT)

> INCREASE PRODUCTS

DECREASE TEMPERATURE \rightarrow

RETURN TO EQUILIBRIUM (SHIFTS LEFT)

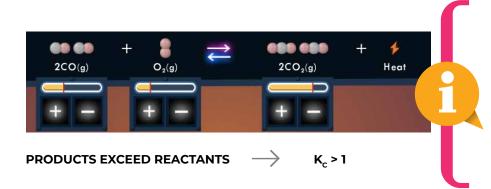
DECREASE PRODUCTS

CHEMISTRY CONCEPT:

When a system at equilibrium is disturbed by change in pressure, it will adjust to reestablish equilibrium.

INCREASE PRESSURE

- INCREASE CHANCE OF COLLISIONS ON THE SIDE WITH MORE MOLECULES
- REACTION SHIFTS TO DIRECTION WITH **FEWER MOLECULES**



DECREASE PRESSURE

- DECREASE CHANCE OF COLLISIONS ON THE SIDE WITH MORE MOLECULES
- REACTION SHIFTS TO DIRECTION WITH MORE MOLECULES

CHEMISTRY CONCEPT:

When the equilibrium constant (K_c) for a reaction is **greater than 1**, the products are favored at equilibrium.

CHEMISTRY CONCEPT:

When the equilibrium constant (K_c) for a reaction is **less than**1, the reactants are favored at equilibrium.

REACTANT CONCENTRATION SIMILAR TO PRODUCTS $\longrightarrow K_c \approx 1$

CHEMISTRY CONCEPT:

When the equilibrium constant (K_c) for a reaction is **near 1**, the reactants and products exist in similar concentrations at equilibrium.